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[Δt1] P1: I like the mirror

[Δt2] P2: Yes .. but i think this should 
   be at the entrance

[Δt3] P1: I agree... What is this?

P2

[Δt1] P1: I like the mirror

[Δt2] P2: Yes .. but i think this should 
   be at the entrance
   [P2 looking at table]

[Δt3] P1: I agree... What is this?
       [P1 pointing at lamp] P1

Δt1

Δt1 

Δt2
Δt2 Δt3 

Δt3 

P2 gazeP1 gaze

COREFERENCE RESOLUTION: MIRROR

COREFERENCE RESOLUTION: MIRRORCOREFERENCE RESOLUTION: TABLE

Δt3 

LA
SER PO

IN
TER

Object Metadata
Added to Transcript

Augmented Transcript Speech Transcript

Δt3 

Object Metadata
Added to Transcript

COREFERENCE RESOLUTION: LAMP

Figure 1: Depiction of our system performing coreference resolution by leveraging non verbal cues such as pointing and
visual attention. The system uses user’s pointing behaviour and eye-gaze to determine the referent of ambiguous referring
expressions, by correlating the location of eye gaze and pointing targets with pronoun "this" used by users.

Abstract
Understanding transcripts of immersive multimodal conversations

is challenging because speakers frequently rely on visual context

and non-verbal cues, such as gestures and visual attention, which

are not captured in speech alone. This lack of information makes

coreferences resolution-the task of linking ambiguous expressions

like “it” or “there” to their intended referents-particularly challeng-

ing. In this paper we present a system that augments VR speech

transcript with eye-tracking laser pointing data, and scene meta-

data to generate textual descriptions of non-verbal communication

and the corresponding objects of interest. To evaluate the system,

we collected gaze, gesture, and voice data from 12 participants (6

pairs) engaged in an open-ended design critique of a 3Dmodel of an

apartment. Our results show a 26.5% improvement in coreference

resolution accuracy by a GPT model when using our multimodal

transcript compared to a speech-only baseline.

CCS Concepts
•Human-centered computing→Natural language interfaces;
Virtual reality; Collaborative interaction;

Keywords
multimodal coreference resolution, virtual reality (VR), speech, gaze,

pointing

1 Introduction
The use of VR and AR for collaborative applications is rapidly

growing, enabling immersive recordings of activities, such as design

reviews [19, 20, 21, 2, 3, 1], remote support [33, 14], and social

interactions [40]. These recordings are increasingly revisited to

support collaboration, analysis, and follow-up tasks. As adoption

grows, machines will need to better understand such recordings

in order to summarize discussions, extract insights, and provide

accessibility support.

However, immersive conversations (both, in real-world or mixed

reality environments) are inherently multi-modal. Besides speech,

conversation participants frequently use non-verbal cues–such as

gaze and pointing–to establish shared understanding (Figure 1).

This poses a difficulty for machine comprehension. Referring ex-
pressions (REs), such as “this” or “that,” are common in natural

conversation, yet their meaning often depends on visual or ges-

tural context. For example, in the utterance “I like it!” the RE “it”

can only be understood when paired with a gesture or gaze to-

ward the referent. Current Large Language Models (LLMs) and
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Visual Large Language Models (VLMs) can process transcripts of

meetings to generate summaries and insights, but they struggle

with these ambiguous Referring Expressions, leading to incorrect

or incomplete identification of referenced objects. This limits the

ability of intelligent systems to support tasks such as summarizing

VR conversations [47], extracting information from design review

meetings [23], and offering real-time accessibility support.

Prior research has explored grounding conversation in shared

visual contexts by linking dialogue to entities in a scene using

neural models [46, 9, 15, 10, 17]. However, these approaches are

ineffective when speakers never explicitly name the object they are

referring to (exophora). For example, in the dialogue ‘P1: "What

do you think about this?"‘ ‘P2: "It does not look comfortable!"‘,

the referent remains unclear without additional cues. Even when

entities are explicitly named (endophora), coreference resolution is

often unreliable in natural conversations [47]. For instance, after ‘P1:

"There is a funny coffee table."‘ a response like ‘P2: "We should move

this."‘ could refer either to the table or another object introduced

later. While seminal HCI work such as “Put That There” [5] and

follow-ups [34, 27, 7] leveraged non-verbal cues in human–machine

interaction, they did not address multi-speaker conversations or

use such cues for transcript comprehension. Similarly, studies on

gaze synchrony in collaboration [41, 39, 28, 31] highlight its role in

establishing shared focus, but have not quantified how effectively

it identifies the precise object under discussion.

This paper proposes a system (Figure 2) that augments VR speech

transcripts to improve coreference resolution, by leveraging non-

verbal cues. By inferring speakers’ attention through their gaze

and pointing behavior, the system disambiguates spatial implicit

referring expressions (REs) such as ‘P1: "What do you think about

this?"‘ or ‘P2: "It does not look comfortable."’ The system augments

the transcript with contextual cues, linking these expressions to the

intended object in the scene (e.g., the living room sofa), enabling

more accurate downstream processing, such as summarization and

information extraction. Our primary contribution is a system that

integrates gaze and pointing into VR speech transcripts to address

the fundamental problem of coreference resolution. We built a

multi-user VR application that captures verbal interactions, eye-

tracking data, and laser-pointing behavior. VR provides a controlled

environment where pre-segmented 3D objects simplify linking

verbal references and non-verbal behavior, avoiding the challenges

of object detection and segmentation that arise in AR or real-world

settings. VR is increasingly adopted for collaborative design review

in both academia [19, 20, 21] and commercial applications [2, 3, 1],

making it a natural setting to systematically study how non-verbal

cues can be integrated into transcript comprehension. To evaluate

our system, we conducted a study with 12 participants (six pairs)

performing a collaborative design review in VR. We compared

coreference resolution performance performed by Chat GPT4 on

our augmented transcripts against a baseline using only speech

transcripts.

The primary contributions of this work are twofold:

• A novel system that augments speech transcripts from

collaborative VR sessions with non-verbal cues (gaze and

pointing) to resolve ambiguous referring expressions, vali-

dated through a 12-participant study that demonstrates a

26.5% improvement in coreference resolution accuracy

over a speech-only baseline.

• Aquantitative analysis of how different non-verbal behaviors—

gaze and pointing—and their synergies (individual, concur-

rent, and recurrent patterns) contribute to identifying the

object of interest, establishing a clear hierarchy of cues for

resolving ambiguity in immersive collaborative dialogue.

2 Related Work
We review previous work on coreference resolution, visual attention
as well as pointing based communication in collaborative settings,

and how HCI research leveraged comprehending deictic behaviour

such as speech+gaze and speech+gestures through non verbal and
multimodal interaction.

2.1 Coreference Resolution
Coreference resolution involves identifying words and phrases in a

text that refer to the same entity, a crucial task in natural language

processing [9]. This task is particularly challenging in conversa-

tional contexts due to their fluid structure, dynamic topic shifts,

ambiguous pronoun use, and implicit shared knowledge, which can

obscure clear reference resolution [46]. For example, speakers often

use pronouns instead of specific names, complicating entity linking

[4].

2.1.1 Visual Coreference Resolution. Recently, coreference reso-
lution has significantly advanced through machine learning, es-

pecially when integrating visual and textual data to link text ex-

pressions to entities in images. This involves a system’s ability to

understand linguistic cues and visual features, using Neural Net-

works to process visual scenes and identify entities connected to

text mentions [9, 45, 46]. Yu et al. developed VisCoref, a model for vi-

sual pronoun coreference resolution using deep learning techniques

[46]. Goel et al. utilized "weak supervision" to train a model that

identifies coreferences in text-image pairs and determines pronoun

referents [9]. Yu et al. introduced VD-PCR, a framework to improve

Visual Dialog comprehension through Pronoun Coreference Reso-

lution by training a multi-modal BERT to understand pronouns in

image-dialogue pairs and pruning dialogue to retain relevant input

[45]. These approaches involve resolving coreference by training

neural networks to analyze visual scenes, using one or multiple

neural networks to process 2D images for visual scene analysis.

2.1.2 Immersive Visual Coreference Resolution. Several studies have
approached visual coreference resolution using 3D visual repre-

sentations instead of 2D. Kong et al. [15] presented a method that

uses natural language descriptions of RGB-D scenes to enhance

visual scene comprehension. Hong et al. advanced this by embed-

ding 3D world knowledge into expansive language models in their

3D-LLM [12], providing insights into coreference resolution in

three-dimensional contexts. These methods resolve coreferences by

analyzing the visual scene, disambiguate entities, and correlating

them with textual mentions. Kottur et al. introduced the SIMMC

2.0 dataset, which includes immersive multi-modal conversations

and a baseline model for coreference resolution and multi-modal

disambiguation to improve AI assistants [17]. Dynamics of coref-

erence resolution in human-AI interactions inherently differ from
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those in human-human exchanges, where in human-AI dialogues,

the AI system can request clarifications when visual coreference

resolution is uncertain, while seeking clarification is inherently

limited when analysing human-human dialogues, especially when

the original speakers are no longer accessible for further context.

Using the SIMMC 2.0 dataset, Guo et al. proposed a framework that

uses metadata in the field of view to help disambiguate objects and

correlate them with textual dialogue information [10].

We use a similar approach by extracting metadata from the scene

based on a user’s nonverbal cues (e.g., gaze, pointing). Previous

methods resolve coreferences by analyzing the visual scene with

neural networks, which involves understanding the scene, seg-

menting entities, and modeling relationships with mentions in the

accompanying text. In contrast we adopt a simpler approach to

visual coreference resolution by leveraging non-verbal cues (e.g.,

users’ visual attention and pointing) to identify the target in a 3D

scene, enhancing a speech transcript with contextual information.

2.2 Visual attention during communication
Synergies of gaze are common during human-human collaboration,

stemming from the shared visual context but extending beyond

visual alignment. Previous research highlights how this fosters

mutual understanding, reduces the likelihood of misunderstand-

ings, and enhances collaboration. Vrzakova et al. used recurrence

quantification analyses (RQA) to identify patterns in visual atten-

tion during collaborative tasks, showing alignment with screen

activity correlated with team performance and collaboration [41].

Villamor and Rodrigo found concurrent visual attention crucial in

pair-programming tasks [39], while Moulder et al. quantified team-

level gaze dynamics using RQA, finding them predictive of task

success [28]. Awareness of visual attention helps ground referring

expressions (REs) within a visual scene. Schneider and Pea demon-

strated enhanced collaboration with mutual gaze perception in 2D

tasks [36], and Zhang et al. showed gaze cursors facilitated commu-

nication in 2D screen interactions [48]. D’Angelo and Begel found

visual attention cues reduced communication complexity in pair

programming, aiding implicit referring expressions [8]. Similarly,

visual attention can help to ground context in immersive scenarios

where the visual context spans 360 degrees, creating blind spots

for interlocutors known as the fragmentation problem. Hindmarsh

et al. introduced this in collaborative environments [11], and Bovo

et al. showed bidirectional head-based cues in VR increased mutual

awareness and reduced cognitive load during data analysis [6]. Jing

et al. found bidirectional eye gaze cues improved co-presence, gaze

awareness, and collaboration in MR environments [13].

This prior work has shown the importance of visual attention

awareness in simplifying human-human dialogue comprehension

by enabling more implicit communication. In our work, we leverage

visual attention to enhance machine comprehension of immersive

human-human dialogues. Visual attention patterns, especially in

tasks where participants work closely together, have been shown

to predict various aspects of the collaboration, ranging from task

success to the quality of the collaborative experience. However,

to the best of our knowledge, visual attention synergism, such as

concurrent and recurrence of visual attention, has never been used

as a retrieval method to identify the object of attention during

collaborative discussion.

2.3 Pointing Based Communication
The absence of visual attention awareness, the complexity of a

visual scene, and the difficulty of verbally describing a referent

prompt the use of pointing gestures with utterances, known as

deictic expressions [44]. Research shows that pointing gestures,

particularly in immersive multi-modal conversations, significantly

aid in referent disambiguation [44]. In AR/VR, pointing gestures

become even more effective due to the use of lasers, enabling users

to specify the referent of a pointing gesture [43].

Piumsomboon et al. found that virtual awareness cues, including

pointing gestures, field of view, and eye gaze, significantly improved

user performance, usability, and subjective preferences in MR col-

laboration [32]. Similarly, Bovo et al. demonstrated that users prefer

pointing at complex referents, even if it requires movement, over

verbal descriptions [6].The importance of pointing in collaborative

VR environments is emphasized by research focused on enhancing

pointing gestures accuracy. Techniques like warping or distorting

deictic gestures have been proposed to improve collaboration [37].

Mayer et al. explored offset correction and cursor effects on mid-air

pointing, finding that subtle redirection of a user’s arm to align

with their gaze can significantly improve pointing accuracy from

an observer’s perspective [26].

This collection of research emphasises that when the gold stan-

dard for immersive multi-modal dialogue comprehension (i.e., the

human) faces uncertainty regarding referent clarity, it consistently

resorts to pointing for disambiguation, whether in the speaker or

observer scenario. Therefore, our work uses pointing behaviour

to enhance machine comprehension of immersive human-human

dialogues.

2.4 Non Verbal and Multimodal Interaction
Prior work in HCI leverages natural nonverbal communication,

such as deictic pointing gestures or interpreting visual attention con-

currently with speech commands. In both cases, speech+pointing

or speech+gaze, the use of visual attention or pointing gestures

aid the process of understanding the referent intended by the user.

Bolt’s seminal work "Put-That-There" [5] explored the integration

of voice commands and hand gestures to enhance user interaction

within graphical interfaces. Similarly Miniotas et al. studied the

integration of eye gaze with speech, especially for interactions with

small, closely spaced on-screen targets [27]. Recent works have

pivoted towards understanding the visual context and harnessing

natural collaborative communication for enhanced interactions.

Specifically, Bovo et al. explored how head direction serves as an

indicator of visual attention and speech [7].

Similarly, Mayer et al. [25] enhanced mobile voice assistants’ un-

derstanding of nearby buildings by incorporating GPS location and

user’s head gaze (i.e. user’s location and visual direction). Romaniak

et al. [34] introduced ’Nimble,’ a mobile interface combining visual

question-answering models with gesture recognition for more in-

tuitive user interactions. Similarly, GazePointAR, a wearable AR

system, resolves speech query ambiguities using eye gaze, pointing

gestures, and Human-AI conversation history [18]. Penzkofer et al.
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explored collaborative behavior in multimodal conversations to

extract metrics like collaboration quality and the impact of tech-

nology usage [30]. However, none of these prior works explored

the collaborative patterns of visual attention or pointing behaviour

specifically towards the problem of identifying a referent of a REs;

instead, they focus on interactions rooted in single-user nonver-

bal communication and single-event interactions. In our work, we

leverage similar information for coreference resolution in recorded

speech transcripts of immersive multimodal conversations.

3 System and Implementation
Our system processes a VR recording of an immersive spatial con-

versation to identify implicit referring expressions (RE) and perform

coreference resolution for each. The input includes the VR session’s

audio, eye-gaze, and laser pointer data. The output is an explicit

referent for each spatial RE identified.

The process involves multiple steps: converting speech into a

diarized transcript, detecting implicit spatial REs, and analyzing

non-verbal cues (gazing and pointing) to identify the object of

interest in a 3D scene for each RE. The system uses the transcript,

non-verbal cues, and visual scene metadata (objects’ names) to

generate an augmented transcript. Finally, coreference resolution

is performed for each spatial RE.

Implemented on an Intel Core i7 with 16GB RAM, the system

processes each 15-minute session in about 5 minutes, including

multimodal data processing and transcript generation.

3.1 Core Concepts
To contextualize our system’s design, we first define the core lin-

guistic concepts it is built to address. The primary challenge is

coreference resolution: the task of associating ambiguous refer-

ences, such as pronouns like “it” or “this,” with the specific entities

they refer to. These ambiguous references are a type of Referring
Expression (RE), which is any phrase used by a speaker to iden-

tify an entity in their environment. Our system specifically targets

implicit spatial REs, where the referent is not explicitly named

within the phrase (e.g., “I like this”), as opposed to explicit spatial
REs that clearly name the referent (e.g., “I like thismirror”). Implicit

REs introduce two distinct challenges that guide our system’s de-

sign. The first is exophora, where the referent is completely absent

from the dialogue and can only be identified through non-verbal

cues and the shared visual context. The second, more frequent,

challenge is endophora, where the referent is named elsewhere in

the transcript, creating textual ambiguity between potential can-

didates mentioned earlier (anaphora) or later (cataphora) in the

conversation. Our system is therefore designed to resolve both ex-

ophoric and endophoric ambiguity by augmenting the transcript

with non-verbal data, providing the necessary context for accurate

coreference resolution.

3.2 Transcript
We utilize the timestamped Whisper AI model

A
to transcribe VR

session recordings. Each participant’s audio track is transcribed

separately, preserving speaker identity and enabling diarization.

The individual transcriptions are then merged, appending speaker

A
https://github.com/linto-ai/whisper-timestamped

identifiers to each segment and arranging them chronologically.

The resulting transcript of the collaborative communication in-

cludes temporal timestamps for each word and sentence, along

with speaker identity information.

3.3 Identify Implicit Spatial Referring
Expressions (RE)

Implicit spatial referring expressions (REs) reference a location

or spatial relationship indirectly without explicitly naming the

location or object. For instance, "right on top of it!" is an implicit

spatial RE, whereas "right on top of the couch!" is an explicit spatial

RE. To identify these, we first identify all spatial REs and then

classify each as either implicit or explicit.

3.3.1 Identify Spatial referring expressions. GPT-4 is used to iden-

tify spatial referring expressions (REs) in the VR transcript. The

prompt defines the system’s role: "you are a system that identifies
spatial referring expressions related to objects/places in a given sen-
tence". The prompt also specifies the response format: "list them in
the following JSON format:{ "spatial_referring_expressions": ["refer-
ring_expression",...]}". We further refine the prompt to clarify what

constitutes a spatial RE to an object or place and what does not. We

exclude REs where the referent is a person (e.g., you, me, we, guests)

or temporal REs (e.g., now, then, today, tomorrow). Additionally,

we specify not to list REs related to objects not currently present in

the scene (e.g., "there is no oven") or abstract/metaphorical entities.

Next, we iterate through each sentence in the transcript. For each,

we send the refined prompt to GPT-4. The model’s responses (i.e.,

identified REs) are saved within the JSON file of the transcript. The

full prompt can be seen in the supplemental material 5.3, Listing 1.

3.3.2 Classify implicit and explicit referring expression (RE). After
identifying each spatial RE, the system further classifies them to

identify those requiring coreference resolution (i.e., implicit spatial

REs). We generate a prompt for GPT-4 containing the spatial RE

and its sentence, asking the system to determine if the RE’s referent

noun is present within the sentence. If a spatial RE’s referent is

contained within the sentence, we classify it as explicit; if not, we
classify it as implicit. The full request sent to the API can be seen

in the supplemental material 5.3, Listing 2.

3.4 Identify Object of Interest
To pinpoint the object of interest within a scene, we analyze the

spatial behaviors of people, using time series data for gaze and

pointing actions. Each sample includes a 3D vector (x, y, z)
representing the gaze position or pointing direction, along with

the name of the intersected object in the 3D model. We process

this data by identifying the gaze and pointing fixations on objects

within the 3D scene, calculating concurrent, recurrent, and individual
behaviors of pointing and gazing at objects, and finally prioritizing
the identified objects hierarchically based on these behaviors.

3.4.1 Gaze and Pointing Fixations. Fixations refer to periods during
which the person’s attention (eye gaze or laser pointer) remains

steady on a specific point in space. By analyzing fixations, we

can discern meaningful samples within a signal—such as those

indicating the person is pointing at or looking at an object—from

noise, like when the person is merely glancing around the room.

https://github.com/linto-ai/whisper-timestamped
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Figure 2: The system architecture, as depicted in the diagram, consists of four main components: Transcript Generation
(Section 3.2), Spatial Referring Expression (RE) Identification (Section 3.3.1), Object of Interest Identification (Section 3.4), and
Coreference Resolution (Section 3.5). In Transcript Generation (Section 3.2), the Whisper AI model transcribes audio with
time-stamping. Spatial RE Identification (Section 3.3.1) uses GPT-4 to detect Implicit Spatial REs for coreference resolution,
with performance detailed in Fig 8(b). Object of Interest Identification (Section 3.4) analyzes pointing and gaze to identify
objects in Implicit REs, employing fixation calculation, concurrence recurrence, and a hierarchical selection method; results
shown in Fig 7, and the fourth step generates descriptions of non-verbal behaviours and identified objects. Finally, Coreference
Resolution (Section 3.5) contrasts a baseline system (which uses only the speech transcript) with our proposed system (which
integrates the transcript with the non-verbal behaviour and the object that it entails).

We calculate fixations using the I-DT (Dispersion-Threshold

Identification) algorithm [35], extended to use additional scene

information. Our gaze samples, recorded as points (x, y, z) in
a virtual reality (VR) environment, are computed by casting a ray

from the eye position along the eye tracker’s recorded direction.

This includes identifying the geometry hit by the ray in the VR

environment. This helps determine whether the person is fixating

on an object or moving toward a new target. If the pointer moves

to a different object, the fixation is either completed or reset.

When using a laser pointer in a virtual environment, people

often initially point incorrectly and then adjust. To address this,

we calculate both eye and ’laser fixations’—periods where the laser

pointer is steadily aimed at one location. This filters out data related

to adjustments, keeping only the informative parts where the laser

is fixed on the intended object. By considering both eye and laser

fixations, we more accurately determine the person’s attention

and interaction within the VR environment. We use a 0.5-degree

threshold and a 100-millisecond duration threshold as proposed by

Salvucci and Goldberg [35].

3.4.2 Fixation Concurrency over object. Previous research high-

lights that synchronizing verbal communication with visual atten-

tion reduces misunderstandings during collaboration [41]. Building

on this, we believe that measuring simultaneous visual attention

or pointing provides better insights into conversation focus than

analyzing individual behavior alone.

Our algorithm detects overlapping fixations on the same object

by two individuals. Each fixation is represented as a tuple with

the object and start and end times. We measure concurrency by

counting how often both individuals fixate on the same object at

overlapping times, normalizing this count by the maximum possible

concurrent fixations. This approach quantifies the extent of shared

attention on objects during collaborative interactions.

3.4.3 Fixation Recurrence over object. A variation of concurrent

attention is recurrent fixation, where two people focus on the same

object in a 3D scene at different times. One person makes a com-

ment and fixates on an object momentarily before looking away.

The second person, guided by cues, then shifts their attention to

the same object later. Although not simultaneous, this shows syn-

chronization of verbal communication with visual attention.

To detect recurrent fixations between two people, we use their

fixations to compute the recurrence of an object. The recurrence

value is the total duration of fixations on the object by both indi-

viduals, divided by twice the total time of the REs. This approach

measures how often both people direct their attention to the same

object, indicating shared focus. Recurrent fixations are calculated

for both gaze and pointing.
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3.4.4 Individual fixations over object. We also calculate the percent-

age of time an object𝑜 was fixated on. This percentage is determined

by dividing the total duration of fixations on the object 𝐷 (𝑜) by the
total duration of all fixations 𝑇 , and then multiplying by 100. This

gives us the proportion of the experiment time that each object

held the participants’ attention.

3.4.5 Hierarchical Selection. Since LLMs are primarily designed to

predict and generate human language based on probabilistic models,

their handling of numbers [42, 22] is not as precise or reliable as

their processing of textual information. Consequently, they are less

effective at handling numerical data, such as behavioural signals

(i.e., non-verbal cues). To address this limitation, we supply the

LLMs with deterministic answers instead of numerical quantities

by developing a Hierarchical Selection algorithm. This algorithm

establishes a hierarchy of importance for the metrics identified

previously, using it as a fallback mechanism if a behaviour measure

combination is not occurring.

Pointing, a deliberate action requiring effort, strongly indicates

intention and attention, while gazing is more reflexive and influ-

enced by various factors. Thus, pointing behaviour is prioritized

over gazing. Additionally, the context of these behaviours is crucial;

synergistic behaviours (concurrent or recurrent pointing/gazing)

are more informative than individual behaviours, indicating shared

focus and likely discussion topics.

This hierarchy guides the identification of the object of inter-

est. Synergistic pointing behaviour is prioritized, selecting objects

pointed at concurrently or recurrently for the most time. If absent,

individual pointing by the speaker of the implicit spatial reference

is considered. If no individual pointing occurs, visual attention

(gazing) is analyzed, prioritizing objects gazed at concurrently or

recurrently, followed by objects the speaker gazed at the most.

The output includes the selected behaviour measure (concur-

rent/recurrent/individual with gaze/pointing), the object with the

highest percentage of fixation for that measure, and the person

performing the implicit spatial RE.

3.4.6 Generate a description of the object of interest and the be-
haviour used to determine it. To make the implicit spatial RE less

ambiguous and, therefore, facilitate coreference resolution, we inte-

grate the object identified in the previous step into the transcript in

textual form, forming an augmented transcript. The previous steps
provided details such as the name of the recognised object, the

behaviour measure leading to its identification, and the person per-

forming the implicit spatial RE. Using this information we enhance

the transcript by adding contextual information, such as "Person X

was pointing/looking at Object Y" or "Both people concurrently ob-

served Object Z" to the end of the sentences containing the implicit

spatial RE. For example, a sentence in the augmented transcript

might appear as: "[01:00] P1: This looks weird. [P1 was pointing at

the sofa]."

3.5 Coreference Resolution
Coreference resolution in GPT-4 uses two methods: the baseline

(speech-only transcript) and our proposed system (augmented tran-

script). Initially, a system description defines GPT-4’s role in resolv-

ing implicit spatial references (REs) within sentences. The full tran-

script is included for each coreference resolution attempt. GPT-4

processes up to 8,192 tokens, sufficient for our transcripts averag-

ing 1,841.625 tokens (max 3,066, min 1,001). Each implicit spatial

RE is addressed individually within the transcript, updating the

prompt with the specific RE sentence. (See supplemental material

5.3, Listing 3 for the complete prompt.)

4 Data collection for System Evaluation
There are currently no existing datasets that encompass collab-

orative speech, eye-gaze, and contextual information. Therefore,

to assess the effectiveness of our proposed system, we compiled

a dataset by recording 6 pairs of participants who were asked to

collaboratively review a virtual apartment
A B

scene in VR (Figure

3) capturing their speech and eye-gaze within the 3D space. This

study received review and approval from our institution’s internal

ethics review process.

4.1 Apparatus
Each participant used an Oculus Quest Pro, which rendered the

scene and collected audio, gaze, and gesture data. Audiowas recorded

via an internal microphone, gestures via controllers, and gaze via

built-in cameras at 120Hz with 0.5 degrees accuracy. We developed

a custom application using Unity 2022.3.2f1 and the Oculus Unity

SDK. This application rendered a 3D scene featuring two apartments

in a real-time session where participants’ avatars, represented using

the Oculus Avatar SDK, interacted. Participants navigated using

thumbstick controllers and used a laser pointer tool activated via

controller buttons. The embedded microphone and speakers en-

abled verbal communication between participants. Avatar move-

ments, including head and hand gestures, were streamed with low

latency using the Photon Fusion v2 Network API to synchronize

their positions and behaviors across all participants’ scenes. A mod-

erator could communicate audibly but was not visually rendered

within the VR session.

4.2 Participants
We recruited 12 participants (4 women, 8 men) with the following

inclusion criteria: being a fluent English speaker and having normal,

or corrected-to-normal vision. Participants received compensation

of $75CAD, and sessions lasted approximately 60 minutes.

4.3 Task
Participants engaged in an open-ended collaborative task involv-

ing navigating a virtual apartment scene, where they identified

and discussed design aspects such as issues, considerations, and

personal preferences. This task draws inspiration from recent VR

applications in architectural reviews, as evidenced by studies [19,

A
https://sketchfab.com/3d-models/vr-loft-living-room-baked-f3e6f16527af4465858a

34cc1e9e7a2b

B
https://sketchfab.com/3d-models/vr-morden-loft-apartment-baked-dd252381b69d

41f883083677e56a7f3e

https://sketchfab.com/3d-models/vr-loft-living-room-baked-f3e6f16527af4465858a34cc1e9e7a2b
https://sketchfab.com/3d-models/vr-loft-living-room-baked-f3e6f16527af4465858a34cc1e9e7a2b
https://sketchfab.com/3d-models/vr-morden-loft-apartment-baked-dd252381b69d41f883083677e56a7f3e
https://sketchfab.com/3d-models/vr-morden-loft-apartment-baked-dd252381b69d41f883083677e56a7f3e
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Figure 3: The two apartment scenes reviewed by participants. Participants were asked to collaboratively review these two
virtual apartments in VR. A B

20, 21] and commercial uses [2, 3, 1] aimed at pre-construction

evaluation of architectural designs. Experimenters guided partici-

pants encouraging them to examine spaces, furnishings, fixtures,

and equipment, and to discuss observations with their collaborator.

Participants had the freedom to comment on any design aspect

without specific requirements. It was emphasized that consensus

was not necessary, there were no right or wrong solutions, and the

main goal was to engage in an environment-focused discussion.

Supplemental material includes five conversation excerpts with

labeling, co-reference resolution, and associated videos.

4.4 Procedure
Each data collection session followed a structured procedure. Ini-

tially, participants were presented with an informed consent form

detailing the study’s purpose, participant expectations, and data

handling procedures, which they read and signed. Participants were

informed that they would navigate a virtual 3D model of an apart-

ment, collaborating to identify and discuss design elements. Next,

participants received an orientation to the head-mounted display

(HMD), focusing on proper fitting and adjustment of the HMD.

They also received instruction on using the device’s controllers for

navigation and interaction within the application. Participants then

engaged in the main task, which lasted approximately 15 minutes.

Additionally, they performed an unrelated VR task for approxi-

mately 15 minutes per apartment. After completing both tasks,

participants underwent a comprehensive debriefing session where

the study’s purpose and data collection rationale were explained.

4.5 Collected Data
Various data were collected during the task, all recorded at 120Hz.

Eye-tracking data was collected recording the x, y, and z coordi-

nates of gaze locations on the scene’s objects. Laser pointing data

was similarly collected, recording the x, y, and z coordinates of the

laser’s location on the scene’s objects. Additionally, participant con-

versations were recorded. All participant data, was recorded by the

monitoring application. Data synchronization and time stamping

were ensured using a common time reference. An example snap-

shot of the collected data is shown in Figure 4, which displays a

view from a participant’s perspective alongside a segment of the

transcribed conversation.

4.6 Data Labelling
Three of the authors manually labeled transcribed audio recordings

to identify spatial referring expressions (REs) and classify them as

implicit or explicit spatial REs. Implicit REs were further categorized

based on whether they referred to an entity present in the transcript

(endophora) or one absent, relying on visual context and non-verbal

communication (exophora). Subsequently, we determined the ref-

erent and corresponding target geometry in the 3D scene for all

references. The manual labeling process was carried out in order to

identify the ground truth and compare the results of our proposed

system. Given that three distinct raters participated in this labeling

task, we assessed inter-rater reliability to ensure consistency, as

discussed in Section 4.6.5. An example of labeled data is shown

in Figure 5, which displays implicit RE (exophora/endophora) and

explicit RE. Further examples of labeled data are available in the

supplemental material 1–4.

4.6.1 Labeling Spatial Referring Expressions. Manual labeling be-

gins by identifying all expressions and phrases which reference

objects or places in the scene. These phrases or expressions might

contain demonstrative deixis "this chair" or "the other one", adverbs

of place "it would be better there" and prepositional phrases "...under

the counter-top". We exclude certain RE from the process: objects

not currently present (e.g., ’there is no oven’), temporal deixis (e.g.,

’in the room we were before’), and abstract or metaphorical entities

(i.e. in the dialogue ‘P1: "We should isolate this shower."’ ‘P2: "I’d

like that!"’ in the second sentence, P2 refers to the idea of isolating

the shower, not the shower itself).

4.6.2 Labeling Implicit, Explicit, Endophora, Exophora. Once all the
spatial referring expressions are identified, we categorize each of

them as either implicit or explicit. For example, an explicit spatial

reference would be "this chair" as it clearly identifies a specific

object in the scene. An implicit spatial reference might be "it looks

weird," because "it" might refer to an object previously mentioned or

an object that the participant is pointing at in the VR environment,

without explicitly naming the object. For each implicit RE it is also

labeled based on its reference type: whether it alludes to an entity

explicitly named within the transcript (endophora) or to an entity

not mentioned in the transcript (exophora).

4.6.3 Labeling Resolved Referent. For all the labeled implicit RE,

we then annotate their intended target by watching the video cor-

responding to when the reference was made. The video provides
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[02:34 --> 02:36] u7 : There are no handles on the cabinets.
[02:37 --> 02:38] u7 : Or maybe these are like push ones.
[02:39 --> 02:42] u7 : And...
[02:44 --> 02:46] u8 : But it's a good design overall.
[02:47 --> 02:51] u7 : I know. Like I got a lot of time

picking on it .
[02:52 --> 02:53] u8 : Maybe if you go upstairs, we'll find...

Figure 4: This snapshot shows participant’s in the environment while the transcript captures the dialogue.

| implicit RE Exophora | implicit RE Endophora | explicit RE | non sptial RE

| ( referent ) --> resolved by human labeler

[02:34 --> 02:36] u7 : There are no handles on the cabinets 1.

[02:37 --> 02:38] u7 : Or maybe these (cabinets) 2 are like push ones.

[02:39 --> 02:42] u7 : And...
[02:44 --> 02:46] u8 : But it's (kitchen design) 3 a good design overall.

[02:47 --> 02:51] u7 : I know. Like I got a lot of time picking on it (kitchen design) 4.

[02:52 --> 02:53] u8 : Maybe if you go upstairs, we'll find...

Figure 5: An example of the manual annotation process. The transcript corresponds to the snapshot in Figure 4 and the manual
labels constitutes the ground truth used to test the system.

| correctly identified implicit spatial RE | incorrectly identified implicit spatial RE

| augmented transcrip | correctly resolved | incorrectly resolved

[02:34 --> 02:36] u7 : There are no handles on the cabinets1.
[02:37 --> 02:38] u7 : Or maybe these 2 are like push ones.

[u7 and u8 concurrently looking at the kitchen cabinets]

these2 --> baseline: cabinets , system: kitchen cabinets

[02:39 --> 02:42] u7 : And...
[02:44 --> 02:46] u8 : But it's 3 a good design overall.

[u8 looking at the kitchen cabinets]

it's 3 --> baseline: design overall , system: kitchen overall design

[02:47 --> 02:51] u7 : I know. Like I got a lot of time picking on it 4.

[u8 looking at the lamp]

it 4 --> baseline: the apartment , system: the lamp

[02:52 --> 02:53] u8 : Maybe if you go upstairs, we'll find...

Figure 6: An example of the system’s output showing the transcript augmentation corresponding to the snapshot in Figure 4,
together with the final coreference resolution results for both the baseline and the proposed system.

context for where the users were and what they were watching, as

well as understanding if they were performing pointing gestures,

in order to understand what participants were referring to.

4.6.4 Labeling Target Geometry. Once all the implicit references’

target objects are identified, we then annotate the corresponding

geometry name in the 3D scene by manually inspecting the geome-

try.

4.6.5 Inter Rater Reliability. All labeling was conducted by au-

thors, where each label was initially assigned by a Labeler and
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subsequently reviewed by a Rater. The Rater either agreed or dis-

agreed with the Labeler’s assignment, adding additional labels in

cases of disagreement. Disagreements were documented with com-

ments for each specific label and resolved through discussion at a

later stage. To evaluate the consistency of the labeling process, we

performed an inter-rater reliability analysis, initially resulting in

an agreement percentage of 80.7%. Following discussion and reso-

lution of disagreements, a final complete agreement on all labels

was achieved among all labellers.

5 Results
We evaluate our system’s ability to identify implicit spatial REs

(Figure 8d), to identify the specific geometry referred to (Section 5.2),

and to perform coreference resolution for the identified implicit

spatial REs (Section 5.1). The described manual labeling procedure

provide the ground truth for the evaluation. Performance measures

of precision and F1-score are calculated for each individual user.

Data aggregation is done per user rather than per conversation,

considering each user’s unique communication style, preference

in using non-verbal communication, and vocabulary. Because the

collected data does not conform to a normal distribution, we use a

nonparametric bootstrap approach with 1,000 resamples to estimate

the sampling distribution and derive 95% confidence intervals for

evaluating differences.

5.1 Identify Implicit Spatial RE
To evaluate the performance of the implicit spatial RE identification

phase, the F1-score was calculated (Figure 8 (d)). Out of the 350

Implicit REs we manually labelled, our system correctly identified

318 and misclassified 82. Therefore when interpreting this F1-score

it is important to take into account that errors generated in the

identification phase directly propagate to the coreference resolution

phase.

5.2 Identifying Object of Interest
We evaluate the effectiveness of different behaviour measures, such

as concurrent pointing, pointing recurrence, individual pointing,

concurrent gazing, gazing recurrence, and individual gazing, in

identifying the object of interest for each implicit RE. Since no

established techniques utilize collaborative speech, gaze, and world

semantics, direct comparisons with other methods are not feasible.

Therefore, we evaluate the merit of each behavior combination

in detecting the object of interest through an ablation study. This

study assesses the contribution of each individual component to

the overall effectiveness of our system (Figure 7 (a)). We do so by

comparing the results with the ground truth to determine how

many correct and incorrect objects each behaviour measure returns

(Figure 7 (a,d)). While we compare all behaviours with one another,

our system then selects a single one via the hierarchical selection

mechanism described previously(section 3.4.5). We also calculate

howmany correct and incorrect objects our overall system identifies

(Figure 7 (b,c,e)). Using the same ground truth as a reference, we

assess our system’s capability in recognising the object of interest

for the implicit REs.

5.3 Effectiveness of Behaviours in Identifying
Object of Interest

To better understand the impact of the various non-verbal be-

haviours (gaze, pointing), we compute the number of correctly

identified objects for each behaviour, as well as how frequently a

behaviour did not return any result because it did not happen in

tandem with the RE (see Figure 7). The data reveals that pointing

behaviours, with concurrent pointing, recurrent pointing,
and individual pointing occurrences at 15%, 19.3%, and 46.4%

respectively, are less frequent than gaze behaviour, which occurs

at 56.8% for concurrent gazing, 69.3% for gazing recurrence,
and 99.4% for individual gazing instances. Note that individual

gazing is 99.4% rather than 100% due to low eye tracking confi-

dence or blinking. Furthermore, both concurrent and recurrent

behaviours manifest less often than their corresponding individ-

ual behaviours (see Figure 7). For each combination, we computed

precision by dividing the number of correctly identified objects

by the total number of returned objects. The final precision of our

system in identifying the object of interest is 0.875. The results

highlight that pointing is more precise than gazing, showing a

.16 increment in the precision towards identifying the object of

interest (Figure 7 (d)). There is a large difference between gaz-

ing and pointing (gazing: 95% CI [0.667, 0.766]; pointing: 95% CI

[0.926, 0.980]), when comparing their precision.A comparison of

concurrent pointing (Mean = 0.988, 95% CI [0.963,1.000]) and

individual pointing (Mean = 0.926, 95% CI [0.881,0.967]) also in-

dicates a strong difference in precision. Additionally, we assess how

each combination influenced our final result through its selection

in our hierarchical process (Section3.4.5). This is achieved by deter-

mining the frequency with which each behavior is chosen by our

hierarchical selection process. Such frequency highlights the contri-

bution of each behavior measure towards the goal of determining

the object of interest. The results indicate that the combination con-

tributing most to identifying the object of interest is concurrent
gazing (representing concurrent visual attention) at 29.74%. This
is followed by individual pointing at 25.47% and individual
gazing at 21.88%. Moreover, it’s evident that the majority of errors

stem from individual gazing at 5.12% and concurrent gazing
at 4.44%, with individual pointing contributing 3.07% of errors.

5.4 Coreference Resolution
We define a baseline consisting of GPT-4 performing corefer-

ence resolution on the speech-transcript. We compare it to GPT-4

performing coreference resolution on our system’s augmented

transcript. We compare both against the manually labelled ground

truth (Section 4.6.3).We calculated F1-score for both baseline and

system (Figure 8 (c)). When interpreting the F1-score, it’s impor-

tant to take into account that errors generated in the identification

phase (Figure 8 (b)) directly propagate to the coreference resolution

phase (Figure 8 (c)). This is because the errors between the identifi-

cation system and the coreference are independent. For reference

we plotted the F1-score from our implicit spatial RE’s identification

in Figure 8 (c) and Figure 9 (b)(d). Coreference resolution examples

are available in the supplemental material 1–4.
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Figure 7: Identified Object of Interest: (a) Plot depicting the performance of each behaviour combination in terms of identifying
the correct object, the incorrect object, or not identifying an object at all. The percentages for correct, incorrect, or none are
calculated for each implicit spatial RE (y-axis: behaviour measures , x-axis: percentage of correct/incorrect/none). (b) Plot
showcasing the frequency with which each behaviour measure was selected during our hierarchical selection process. Each
behaviour’s percentage bar is divided into ’correct’ and ’incorrect’. The scenario of not identifying anything is excluded since
this condition triggers our hierarchical selection process to fallback onto the subsequent behaviour measure(y-axis: behaviour
measures , x-axis: percentage of correct/incorrect). (c) Plot presenting the percentages for correct,incorrect and none as results
of the hierarchical selection process (y-axis: behaviour measures , x-axis: percentage of correct/incorrect). (d) Plot displaying
the object identification precision, defined as the ratio of correctly predicted positives to total predicted positives, for each
behaviour measure (y-axis: behaviour measures , x-axis: precision on a unit scale). (e) Plot highlighting the final precision of
our object identification process.

5.4.1 Comparing our system to the baseline. We compare base-

line and system F1-score and we observed improved coreference

resolution performance, resulting in a .21 increase in the F1 score

when comparing baseline with a precision of .507 to system with
a precision of .723. Comparing baseline and the system, we see a

clear difference baseline (95% CI: 0.507–0.584) and system (95%
CI: 0.675–0.770) (Figure 8 (c)). Results are further analyzed by cat-

egorizing them into ’Correctly Resolved’, ’Incorrectly Resolved’,

and ’Miss-identified’ (Figure 8 (d)). The latter category includes

instances where implicit REs were classified as explicit, non-REs

were classified as implicit REs, or explicit REs were classified as

implicit. Out of the 350 Implicit REs, there were 318 correctly iden-

tified. The baseline approach correctly resolved 142 (40.6%), while

our proposed system accurately resolved 235 (67.1%) of them.

5.4.2 Understanding endophora and exophora. We compute the

performance of both the baseline and system when resolving

both endophora and exophora Figure 9 (a, b). Results show that

for both baseline and system, there was an average increase of

0.44 in the F1 score for the endophora group (baseline and sys-

tem combined). This effect is more pronounced in the baseline,
which showed a 0.475 point increase in the F1 score. A compari-

son between the baseline endophora (95% CI: 0.133–0.211) and

baseline exophora (95% CI: 0.544–0.696) revealed a clear differ-

ence, with the baseline exophora group achieving substantially

higher performance. This more substantial increase aligns with ex-

pectations of endophora beingmore challenging to resolve than the

exophora. Furthermorewe observed a 0.25 increase in F1 score from

baseline exophora to system exophora, (baseline exophora:
95% CI 0.544–0.696; system exophora: 95% CI 0.809–0.882), indicat-

ing a substantial improvement. This is consistent with expectations,

as the system benefits from additional contextual information and

enriched features that are particularly effective for resolving explicit

references, such as those present in exophora scenarios. Finally the

system endophora improved by 0.15 in F1 score over baseline
endophora, (baseline endophora: 95% CI 0.133–0.211; system
endophora: 95% CI 0.342–0.576), indicating a large improvement.

This indicates that the supplementary information introduced by
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(a) (b) (c) (d)

Figure 8: (a) Plot depicting the count of explicit and implicit REs labelled for each participant (y-axis: count per participant,
x-axis: implicit/explicit). (b) Plot presenting the f1-score for identifying implicit spatial REs. (c) Plot comparing the f1-score for
the coreference resolution task executed by GPT-4 using the speech transcript (baseline) versus our augmented transcript with
metadata (y-axis: f1 score, x-axis: baseline/system). (d) Plot depicting the count of correctly resolved, incorrectly resolved and
miss-identified (y-axis: REs count, x-axis: baseline and our proposed method).

our pipeline aids the GPT-4 model in differentiating between pre-

viously mentioned entities and subsequent entities, enhancing its

coreference resolution capability. Furthermore, by observing the

higher number of endophora occurrences compared to exophora

(Figure 9 (a)), we can infer that this is where the system achieves

most of its performance improvements.

5.4.3 Understanding object and place references. Lastly, we calcu-

lated the F1-score based on whether the reference’s target entity

was labeled as an Object or a Place (Figure 9 (c, d)). We observed

that coreference resolution tends to be less accurate across all mod-

els when the reference’s target entity is a "place." However, this

difference is more pronounced in the system model. Specifically,

system object exhibited a 0.18 increase in the F1 score, with

moderately-overlapping confidence intervals (95% CI: 0.717–0.861

for system object vs. 0.555–0.745 for system place). This find-
ing aligns with our expectations, as references to places may lack

clear geometric boundaries in the 3D scene, with identified objects

(e.g., a fridge) representing only a part of the place (e.g., the kitchen)

rather than encapsulating it entirely.

6 Discussion
We discuss our system’s ability to identify and resolve spatial refer-

ring expressions (REs) through a transcript that has been augmented

with contextual metadata about the scene via nonverbal commu-

nication (i.e., objects of interest, gaze, and pointing behaviour in

relation to implicit spatial REs).

6.1 Identifying implicit spatial referring
expressions

Our system’s first step is to identify implicit spatial referring ex-

pressions (REs) using GPT-4. Out of 350 implicit REs, the system

successfully identified 318 but misclassified 63. Miss-classifications

primarily involved two types: firstly, explicit REs were mistakenly

classified as implicit, such as in "This is a cool little spot," where

"spot" accompanied the RE, leading to incorrect classification. Sec-

ondly, expressions like "I like that." in contexts such as "There is

no TV, this means digital detox." meant non-physical contexts and

wrongly labeled as spatial REs. These errors suggest a need for fu-

ture systems to incorporate accuracy estimates or verify if verbally

expressed entities exist in the 3D environment. Several alternative

methods for parsing text effectively and identifying implicit spatial

REs exist, such as Stanford’s CoreNLP parser [24]. However, we

chose a GPT model because our intention was to identify implicit

spatial referring expressions (REs) and avoid implicit REs that refer

to abstract ideas and hypothetical objects. Given the GPT model’s

nuanced approach and its ability to detect subtle patterns in lan-

guage a GPT model is more effective for this task compared to

rule-based or traditional machine learning systems, which might
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Figure 9: (a) Plot illustrating the count of implicit REs categorized as endophora or exophora for each participant (y-axis:
count per participant, x-axis: endophora/exophora). (b) Plot of the F1-score for the coreference resolution task by GPT-4,
comparing the baseline with our system for two identified groups exophora/endophora (y-axis: f1 score, x-axis: transcript vs.
transcript+metadata). (c) Plot showing the count of implicit spatial REs targeting either an object or place (y-axis: count per
participant, x-axis: object/place). (d) Plot of the F1-score for the coreference resolution task by GPT-4, comparing the baseline
with our system for the two groups object/place (y-axis: f1 score, x-axis: baseline/system).

overlook such patterns. While there were several possible Large

Language Models (LLM) that we could have chosen such as Llama

[38] or Falcon [29] we used the GPT-4 API for the convenience of

not having to run the model locally.

6.2 The merit of non-verbal synergies towards
identifying the referent

Our findings underscore the value of analyzing non-verbal syn-

ergies—collaborative patterns in gaze and pointing—to resolve

referents in complex human-human dialogues. This approach ad-

vances beyond prior work, which has largely focused on single-user,

human-machine interactions with isolated deictic gestures [34, 25,

7, 27]. While other research has acknowledged the significance

of synchronized gaze dynamics in collaborative tasks [28, 31, 41,

39], this information had not been leveraged as a direct retrieval

method for identifying an object of interest. Our work expands on

this by demonstrating that synergistic behaviors in both pointing

(concurrent and recurrent) and gaze (concurrent and recurrent vi-

sual attention) are effective retrieval methods during collaborative

discussions. Furthermore, our results revealed a critical distinction

between these two modalities: pointing is a significantly more ac-

curate predictor of the intended referent than gaze (Figure 7 (e)).

This key finding was foundational to our system’s design. We es-

tablished a hierarchical selection method that prioritizes the more

reliable, volitional behavior (pointing) over the more reflexive, less

precise behavior (gazing). This ensures that our system leverages

the most accurate non-verbal cue available to resolve ambiguity.

6.3 Improving resolution of both endophora
and exophora

Our system performs coreference resolution on each of the iden-

tified implicit spatial REs, resulting in an improved coreference

resolution process for all implicit REs. While the results for ex-
ophora showed significant improvements compared to the baseline,

there were very few cases of them in our dataset (occurrences Fig-

ure 9 (a)). However, for those cases in the exophora group, it is

evident that our system’s advantage lies in incorporating novel in-

formation from the 3D scene metadata. The most common implicit

REs were endophora (referents present in the text but in a different

sentence). Results underscore that, for the endophora group, the

system’s contribution is primarily in enabling the disambiguation

of existing entities within the text. Therefore, our technique im-

proves the comprehension of conversations not only by introducing

new information but also by facilitating the coreference resolution

process of selecting existing entities within the text through the

augmented transcript.
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6.4 Extending Vision-Language Models
Vision-language models (VLMs), aim to understand visual context

using neural networks like CNNs, MultiModal BERT, ResNet, or

RetinaNet [12, 16, 17, 46, 45]. These models analyze the visual scene,

segment entities, andmodel relationships based on textualmentions.

However, they can be prone to errors in scenarios where multiple

objects within the user’s field of view could relate to an ambiguous

referring expression, such as saying "I like that cake" in a cake shop.

In contrast, our approach offers an alternative method to model

relationships between entities in the visual scene without relying

on detailed visual analysis like VLMs. We emphasize the modeling

of relationships between verbal communication and scene objects

by leveraging dynamics in individual and collaborative non-verbal

communication. For instance, collaborative eye-gaze and pointing

can serve as additional inputs to neural networks, providing crucial

information for accurately modeling relationships. This includes

using eye gaze and pointing to indicate where visual attention

aligns during verbal communication, akin to the temporal parsing

of mouse traces demonstrated by Goel et al. [9]. This paper extends

prior work on visual coreference resolution [46, 45, 15, 12, 17, 10],

highlighting novel inputs such as synergistic gaze and pointing that

can operate alongside or independently of visual scene analysis,

thereby contributing to higher accuracy in coreference resolution.

6.5 Reliance on the 3D model and its
granularity

It is important to note that referents varied in granularity, as no

specific constraints were imposed on the participants (i.e. to only

refer to objects). When a spatial reference refers to a place (e.g.,

kitchen, bathroom, or other area), which is an aggregate of objects,

the metadata (3d model name) might not represents the entity the

speaker is referencing. While some object names might include the

location’s name (e.g., "kitchen cabinets" or "bathroom sinks"), oth-

ers might not (for instance, "faucet" could be located either in the

kitchen or bathroom). Our analysis shows a lower F1 score when

resolving place-related entities compared to objects. For instance,

if the referent is the kitchen but the speaker is pointing the laser

at the fridge, while the fridge is part of the kitchen, it is not the

kitchen itself. By describing this verbally (e.g., "[P1 pointing at the

fridge]"), we do not constrain GPT-4, which, being an abstractive

generative model, can infer, based on the richness of the RE and

surrounding dialogue, that the referent might be the kitchen and

not the fridge. Nevertheless, our results indicate that our system

performs statistically worse when the referent is a place than when

it is an object. We acknowledge that our 3D model could also be set

up with more granular object names and using a hierarchical struc-

ture (e.g., a "faucet" would be a descendant of a "sink", which would

be part of "kitchen"). Future work should explore the appropriate

level of abstraction and granularity in the 3D model to address this

limitation.

6.6 Utility of coreference resolution for
immersive conversations recordings

There is a growing interest in spatial computing devices such as

VR/AR for professional collaborative applications. Consequently,

as user adoption increase, there will be an increasing number of

conversations, such as meetings and design reviews, that will be

conducted in VR and recorded for later review, summarization, and

archiving. As more and more conversations get recorded, the desire

to automatically process these conversations and extract salient

moments will increase. However, human-human dialogues present

challenges for machine comprehension for various reasons, such

as determining the object being referred to using implicit referring

expressions. Therefore, we argue that the impact of this work, by

leveraging synergies of non-verbal cues to detect the referent of REs,

will be instrumental in enhancing the accuracy and reliability of

machine comprehension in human-human interactions, ultimately

contributing to more effective and meaningful use of the recording

capabilities of these spatial devices.

7 Conclusion
To address the issue of identifying objects of interest during an

immersive conversation, we developed a system that leverages

transcribed text, eye tracking, and laser-pointing data to resolve

coreferences. It detects implicit REs, identifies the object of attention

in the scene using non-verbal cues, generates a textual description

of the object of interest, and performs coreference resolution using

the textual description generated. By analyzing the data collected

during a 12-participant user study, we find that gaze and pointing

data add value, with pointing data often providing highly precise

(though infrequent) information about which objects share focus.

Compared to a baseline with only speech information which re-

solved 142 cases, our system resolved 235 implicit REs showing an

improvement of 26.5%.
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